

Parks College of Engineering and Aviation
Saint Louis University

Punit Jain, Senior Associate

History

- Founded in 1927 by Oliver Parks in Cahokia, IL
- First Federally Certified College of Aviation
- Part of Saint Louis University since 1946
- Spring 1995 Plans to Relocate to Main Campus in St. Louis, MO
- Summer 1997 Move into the New Building

Programs at Parks

- Aerospace Engineering
- Aircraft Maintenance Engineering
- Aircraft Maintenance Management
- Aviation Science / Professional Pilot
- **Aviation Management**
- Avionics Engineering
- Biomedical Engineering
- Computer Science
- Electrical Engineering
- Mechanical Engineering

Relocation Benefits

- Interaction with other academic units
- Interesting and necessary mix of technology and liberal arts
- College/University
 Relations
- Non Duplication of University Services
- Quality/Image of Space
- Cutting Edge Technology

Campus Plan Issues

- Revitalize Midtown
- Reclaim Dormant Space
- Extend Campus Identity
- Establish Boundaries
- Define Green Space
- Create New and Welcoming Parks College Identity
- Plug into the Infrastructure

Building Design Issues

- Dynamic Identity
- Campus Palette
- Technology Center
- Distinctive Processes and Spaces
- Formal and Informal Learning
- Social Interaction Spaces for Innovation
- Efficient Lab Spaces
- Renovate and Integrate Existing Central Utilities Plant

Design Solution

- Enhances the City
- Responds to Urban Needs
- Creates Campus Environment
- Links the Campus
- More efficient operation
- Increased Synergy among students and faculty
- Strengthened academic programs
- Continues the strategy to reclaim the University's urban space

Design Solution

- Aviation Image
- Creative Use of Materials
- Bold Use of Color
- Movement
- Opportunities for Casual Interaction
- Separate Lab and Office Zone
- Cutting Edge Fluid Systems Labs

Benchmark Data

- Completion Date 1997
- New Area 87,000 GSF
- Renovated Area 11,000 GSF
- Building Efficiency 56%
- Construction Cost \$11 Million
- Cost Per SF \$113.00

Lower Level Plan

OFFICE SUPPORT
SERVICE

Double Height Spaces

Upper Level Plan

South West View

Oliver Hall

$\textcolor{red}{\textbf{CANNON}} \textbf{DESIGN}$

North East View

- Dramatic Entrance Lobby
- Central Circulation Spine
- Interaction Along Circulation
- Science on Display
- Separate Office Zone
- Natural Light into Offices
- Aerodynamics Lab

- Dramatic Entrance Lobby
- Central Circulation Spine
- Interaction Along Circulation
- Science on Display
- Separate Office Zone
- Natural Light into Offices
- Aerodynamics Lab

- Dramatic Entrance Lobby
- Central Circulation Spine
- Interaction Along Circulation
- Science on Display
- Separate Office Zone
- Natural Light into Offices
- Aerodynamics Lab

- Dramatic Entrance Lobby
- Central Circulation Spine
- Interaction Along Circulation
- Science on Display
- Separate Office Zone
- Natural Light into Offices
- Aerodynamics Lab

- Dramatic Entrance Lobby
- Central Circulation Spine
- Interaction Along Circulation
- Science on Display
- Separate Office Zone
- Natural Light into Offices
- Aerodynamics Lab

Engineering Systems

- A/E Integrated Approach
- Zoned Mechanical Rooms
- Centralized Boilers & Chillers
- Decentralized Air Handlers
- Few Vertical Shafts
- Short Duct Runs
- Variable Air Volume
- Variable Flow Pumping
- Variable Frequency Drives

Energy Efficient Strategies

- Natural Light in Offices
- Skylight and Clerestory Light
- Computer Labs in Interior
- North South Orientation
- VAV Systems

Flight Simulator Lab

- 14' X 18'
- 252 NSF

Flight Simulator Lab

- 34' X 22'
- 748 NSF

Avionics Digital Systems/ Microprocessors Lab

- 34' X 22'
- 748 NSF

CAD Classroom / Computer Lab

- 33' X 27' = 891 NSF
- 34' X 24' = 816 NSF

Rapid Prototyping Lab

- 11' X 11'
- 121 NSF

Mechatronics / Robotics Lab

- 36' X 22'
- 792 NSF

Fabrication Lab

- 2,600 NSF

Composite Layup / Repair Shop

- 38' X 23'
- 874 NSF

Computer Aided Manufacturing Lab

- 40' X 22'
- 880 NSF

Structures / Mechanical Systems Lab

- 45' X 34'
- 1530 NSF

Stress Analysis and Prep Room

- 18' X 8'
- ■144 NSF

Water Tunnel

Large Subsonic Wind Tunnel

Small Subsonic Wind Tunnel

Supersonic Wind Tunnel

Shear Water Tunnel

Current Research and Future Directions

Virtual Wind Tunnels

Current Research and Future Directions

Virtual Prototyping

Current Research and Future Directions

Computer Simulations

